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The acoustic power loss in the thermoacoustic mixture-separation process is derived, including the
contributions due to a nonzero gradient in concentration. The significance of the gradient-dependent
term is discussed. The limiting thermodynamic efficiency of the separation is calculated. Under
reasonable circumstances, the efficiency approaches 10�2nHnL(�m/mavg)

2, where nH and nL are
the mole fractions of the two components of the mixture, and �m/mavg is the fractional difference
between the molar masses of the two components. This efficiency is of the same order of magnitude
as that of some other, more conventional separation methods. © 2002 Acoustical Society of
America. �DOI: 10.1121/1.1494446�

PACS numbers: 43.35.Ud, 43.35.Ty �RR�

I. INTRODUCTION

For 20 years, the field of thermoacoustics has been
loosely oriented around the problems of energy conversion in
engines and refrigerators.1 With the discovery of thermoa-
coustic mixture separation,2–4 though, another energy-related
aspect of thermoacoustics has emerged.

Sound waves in a binary gas mixture in a duct can cause
separation of the mixture because the quasiadiabatic tem-
perature oscillation in the bulk of the gas alternately drives
each component of the mixture toward the isothermal wall of
the duct through thermal diffusion. Then, whichever compo-
nent has migrated into the boundary layer is trapped there by
viscosity during the ensuing motion of the gas. This cycle of
thermal diffusion and viscous motion causes the time-
averaged net flow of the mixture components in opposite
directions along the duct. Thermoacoustic mixture separation
is thus intrinsically thermodynamically irreversible, because
it is based on two diffusive processes. Ordinary mass diffu-
sion, which is present in all other statistical separation pro-
cesses as well, is an additional source of irreversibility.

Research and industry have myriad needs to separate
mixtures. Whether thermoacoustics can play a meaningful
role in this arena depends in part on the thermodynamic ef-
ficiency of the thermoacoustic mixture-separation process,
which we consider in this paper. First, we derive the full
expression for the acoustic power loss to first order in the
concentration gradient. We show that the deviation of this
loss from the ordinary thermal and viscous dissipative losses
is generally very small. The implications of this result for the
functioning of thermoacoustic engines and refrigerators are
briefly discussed. Next, we derive expressions for the ther-
modynamic efficiency of thermoacoustic separation in vari-
ous circumstances. Relative to the fundamental limit im-
posed by the first and second laws of thermodynamics, the
efficiency is only 0.0023 for a 50–50 He–Ar mixture. It is
even lower when the components of the mixture are more
nearly equal in mass or less equal in concentration. Never-
theless, the efficiency of thermoacoustic mixture separation
is actually of the same order of magnitude as that of other

widely used irreversible separation processes. Hence, ther-
moacoustic mixture separation is not hopelessly inefficient.
Other features, such as simplicity, reliability, low fabrication
cost, ability to operate at ambient temperature and pressure,
and independence of gravity might make this technique use-
ful for some applications.

II. CALCULATION OF THE DISSIPATION

In order to assess the efficiency of thermoacoustic mix-
ture separation, we first must calculate the rate of acoustic
power loss per unit length in the duct. The acoustic loss may
not be strictly dissipative, because some of the acoustic
power is converted into the free energy of separating the
gases. Nevertheless, we expect the dissipation to be substan-
tial, because the separation originates from viscosity and
thermal diffusion in the boundary layer, both of which are
dissipative processes. To obtain the time-averaged acoustic
power loss per unit length, dĖ2 /dx , we start from the gen-
eral formula

dĖ2

dx
��A

d�pu�
dx

��
1

2
AR� �ũ1�

dp1

dx
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d�u1�
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where p1 and u1 are the complex amplitudes of oscillating
pressure and velocity, respectively, and A is the cross-
sectional area of the duct. In our notation,2,4 �g� denotes the
average of a quantity g over the cross section of the duct,
R�g� denotes the real part, ḡ denotes the average over time,
and g̃ denotes the complex conjugate. The gradient dp1 /dx
can be eliminated through the equation for spatially averaged
velocity, i.e., the solution of the momentum equation in the
acoustic approximation with u1�0 at the walls of the duct

dp1

dx
��

�	
m�u1�
1� f �

, �2�

where 	 is the angular frequency, 
m is the mean density,
and 1� f � depends on the profile of velocity on a cross sec-
tion of the duct and therefore depends on the duct geometry.
The gradient of velocity is eliminated using the spatial aver-
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age of the equation of continuity to first order in differential
quantities


m
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1��
d
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dx
�u1�. �3�

Note that we have kept a term in the gradient of the mean
density, because for a binary mixture undergoing separation
this is not generally zero.

Towards expressing Eq. �1� in terms of ��u1�� and �p1�
alone, without their derivatives, we write the expression for a
differential change in the density, following from the ideal
gas law

d
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�
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where T is the temperature, nH is the mole fraction of the
heavy component, mH and mL are the molar masses of the
heavy and light components, respectively, and mavg�nHmH

�(1�nH)mL is the molar average mass. This identity can be
used to expand both the first-order oscillating component
�
1� and the gradient d
m /dx in Eq. �3�. As with our earlier
derivation of the saturation value of the concentration
gradient,4 we continue to restrict the problem to the case of
dTm /dx�0, and we also assume dpm /dx�0. Then, Eq. �3�
becomes

d�u1�
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dnH

dx
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where a is the sound speed in the mixture, � is the ratio of
specific heats, and we have used the identity �pm�
ma2. To
simplify the final term, we use the single-component conti-
nuity equation,5 which in the present notation is


m� �	�n1��
dnH

dx
�u1� ���

mavg

mH
�“•i1� �6�

to first order, where i is the diffusive mass-flux density vec-
tor. On the right side, �di1,x /dx� is negligibly small, and
�“r•i1� �where r represents the coordinates perpendicular to
x� is zero by virtue of the divergence theorem and the bound-
ary condition of zero mass diffusion into the duct wall.
Hence, Eq. �5� becomes simply


m

d�u1�
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m
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�T1���	

�
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which is identical to the spatially averaged first-order equa-
tion of continuity for a single-component, homogeneous
fluid.

For both the boundary-layer limit and for a cylindrical
tube of arbitrary diameter, we have shown4 explicitly that
T1�(p1 /
mcp)(1�h), where h is a dimensionless function
of the transverse coordinate normal to the wall and cp is the
isobaric specific heat. The first-order equation of continuity
can then be rewritten, using the identity ��1�a2/Tcp , as


ma2
d�u1�

dx
���	�1����1 ��h��p1 . �8�

Substituting Eqs. �2� and �8� into �1�, the dissipation is
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where I�g� denotes the imaginary part of g .
Consider the two terms in brackets separately. The first

term is

	A

2


m��u1��2

�1� f ��2 I�� f �� , �10�

which is just the ordinary viscous damping term, as noted in
Ref. 2. The second term must describe the other diffusive
losses �both thermal and mass diffusion� plus the useful work
done in separating the components of the mixture. Using Eq.
�30� from Ref. 4 for T1 , and with f i��hi�, we have
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where the dimensionless coefficients B and C are defined as
in Ref. 4 for either the boundary-layer limit or for the case of
an arbitrary-diameter tube.

Equations �10� and �11� are still general expressions for
the two terms in Eq. �9�. To make further progress, we now
proceed explicitly in the boundary-layer limit. In that case
f i�(1��)� i/2rh , where rh is the hydraulic radius.6 Expres-
sion �10� becomes

	A

4rh

m��u1��2�� . �12�

From Ref. 4 we recall
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where

�c�
dnH /dx
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, �16�
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In these definitions, kT is the thermal diffusion ratio, ��(�
�1)kT

2 /�nH(1�nH), � is the Prandtl number, L
�(�
 /�D)2, the � i are penetration depths all defined in Ref.
2 or 4, and � is the phase angle by which p1 leads �u1� in
time. Insertion of these coefficients in Eq. �11� yields

505J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002 D. A. Geller and G. W. Swift: Thermoacoustic mixture separation



	A

4rh

���1 ��p1�2


ma2

�L

1��L
��
D��D
�

��1��c

���sin ��cos ��

�1����1��L ����

�� 1�
1���L

��L

�


�
D��D

� � �18�

to lowest order in �/rh . This expression for the second term
of Eq. �9� is similar in form to the expression for the rate of
change of acoustic power in a duct due to a longitudinal
temperature gradient but ignoring viscosity.1 Multiplying the
prefactor through the square brackets, the first,
�-independent term is just the thermal damping term found
previously in Ref. 2, which could have been obtained more
rapidly here by setting �c�0 in Eq. �11� and comparing with
Eq. �57� in Ref. 2. The other term depends on both � and on
the concentration gradient through �c . It is proportional to �,
so it is generally small.

The full expression for acoustic power loss can thus be
expressed as the sum of three terms in the boundary-layer
limit: a viscous term dĖ� /dx , a thermal- and diffusion-loss
term dĖ
 ,D /dx , and a term due to the concentration gradi-
ent, dĖ� /dx . That is,

dĖ2

dx
�

dĖ�
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dĖ�

dx
, �19�

where

dĖ�
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with U1�A��u1�� the volume flow rate. The new term,
dĖ� /dx , must include the reversible work stored in the con-
centration gradient, but Eq. �18� suggests that dĖ� /dx be
viewed as a correction to the thermal- and mass-diffusion
loss accounting for the presence of this gradient. Note that in
the limit kT→0, we find dĖ� /dx→0, and dĖ
 ,D /dx ap-
proaches the well-known boundary-layer thermal-loss term
for acoustics alone.

As described in Ref. 4, Watson7 has also considered
mixtures subjected to oscillating flow in ducts, but neglecting
thermal diffusion and setting p1�0. Watson took the acous-
tic dissipation per unit length in a duct to be

dĖWatson

dx
�R� � ũ1

dp1

dx � 	 , �23�

neglecting the p̃1 du1 portion of the differential acoustic
power. As a result, Watson’s expressions for the power dis-
sipation are equal only to our expression �10� for the viscous
loss. Specifically, Watson’s expression �107� for 	→� ,
which is equivalent to our boundary-layer limit, is exactly
equal to our Eq. �20�. By discarding the differential p̃1 du1 ,
Watson neglected both the thermal loss and the gradient-
dependent loss. Strictly speaking, even if one attempted to
keep p1�0 in this situation, the concentration oscillations
would drive temperature oscillations �via ��, which in turn
could drive density and pressure oscillations, contributing to
the gradient-dependent loss. However, we will see in the next
section that neglect of this effect is not serious.

III. CONCENTRATION-GRADIENT-DEPENDENT
LOSSES

To quantify the relative importance of the new, gradient-
dependent term dĖ� /dx , we define the ratio

b�
�dĖ� /dx �

�dĖ� /dx�dĖ
 ,D /dx �
, �24�

which equals the fractional deviation of the total acoustic
loss from the acoustic loss calculated in Ref. 2. This ratio is
a function of kT , Tm , pm , 
m , nH , 	, rh , the � i , �, �,
dnH /dx , �p1�, and ��u1��. However, it is not difficult to
show that b is only weakly dependent on most of these pa-
rameters, and we can obtain a rough upper limit on this ratio
for cases of practical interest.

The ratio b is proportional to the concentration gradient.
For any closed system, the highest gradient will occur when
the thermoacoustic separation process saturates at ṄH�0.
Using Eqs. �41�, �44�, and �56� from Ref. 4, we can write this
limiting value as

� dnH

dx �
lim

�
�F trav cos ��Fstand sin �����1 �kT�p1���u1��/�pm

4D12rh /�
�Fgrad��u1��2/	
,

�25�

where D12 is the coefficient of mutual diffusion for the two
components of the gas. Although it is experimentally pos-
sible to create much higher concentration gradients than this,
such gradients must decay rapidly unless streams of unmixed
gases are continuously injected into the system. In the con-
text of using thermoacoustics to separate gases which are
initially well mixed, we assume that the maximum concen-
tration gradient is this limiting value.

Using Eq. �25� in Eq. �24�, we can maximize b in terms
of the acoustic amplitudes �p1� and ��u1��. It is most conve-
nient to replace �p1� by z��u1��, where z is the magnitude of
the specific acoustic impedance. In that case one finds that b
increases asymptotically toward the value
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as z→� and as ��u1��→� . ‘‘Infinite’’ ��u1�� cannot be ap-
proached in reality because the oscillating flow would be-
come turbulent, likely destroying the separation effect.
Therefore, we take this limit to imply velocities just below
the onset of turbulence. For the He–Ar mixtures studied in
Refs. 2–4, bmax is maximized when ���13.4°. By analogy
with Fig. 5 from Ref. 2, we show bmax at ���13.4° as a
function of nH in Fig. 1. Because He–Ar mixtures have
among the highest thermal diffusion ratios found in nature, it
is unlikely that a bmax much greater than 0.004 will be en-
countered in any mixture separation.8,9 Since dĖ
 ,D /dx dif-
fers little2 from the ordinary thermal loss in a homogeneous
gas, we conclude in general that, even with dnH /dx�0, the
added dissipation caused by thermoacoustic separation is
much smaller than the ordinary thermal and viscous losses
which would be calculated assuming a pure gas.

It is fortunate that bmax is small. If the acoustic dissipa-
tion arising from the concentration gradient had turned out to
be large, then we would have to reformulate much of ther-
moacoustics: Rott’s equations10 assume a simple, nonsepa-
rable gas, and hence do not strictly apply to the propagation
of sound in mixtures. Because dĖ� /dx is generally much
smaller than the other acoustic losses, though, and because
dĖ
 ,D /dx typically differs from the pure-gas thermal dissi-
pation by less than 1%,2 Rott’s equations accurately describe
the local properties of most thermoacoustic engines and re-
frigerators in practice. There are at least two important ex-
ceptions. First, the mixture-separation phenomenon can eas-
ily create a spatial distribution of the gas composition, and
hence a significant x dependence of the gas properties that
must be used in Rott’s equations. This fact is illustrated by
the resonator coupling experiment2 in which the separation
effect was discovered. Second, dramatic changes to the equa-

tions of thermoacoustics result when one component of the
mixture experiences evaporation and liquefaction in the
acoustic process.11

Finally, because dnH /dx can have either sign, the con-
centration gradient seems to offer the possibility of creating
or amplifying sound, much like the temperature gradient
across the stack or regenerator in a thermoacoustic engine,
and it is interesting to consider whether such mixing-driven
acoustic power production could be experimentally demon-
strated. Unfortunately, dĖ� /dx is overwhelmed by the ordi-
nary viscous and thermal dissipation unless the concentration
gradient is extremely abrupt. We have not discovered a way
to demonstrate this effect.

IV. THERMODYNAMIC EFFICIENCY

We can define the efficiency of thermoacoustic separa-
tion by the ratio of the rate at which useful separation work
is done to the total acoustic power consumed in performing
the separation

��
dĠ/dx

dĖ tot /dx
, �27�

where dĠ/dx is the rate at which the Gibbs free energy of
the mixture increases, per unit length. This definition of ef-
ficiency is thermodynamically meaningful, because Ġ is the
rate at which exergy �i.e., useful work� is built up in the
separating mixture12 and Ė tot is the rate at which exergy is
consumed by the wave13 if the duct walls are in contact with
a thermal reservoir at a temperature at which heat has no
value.

We can derive a simple expression for dĠ/dx by start-
ing with the well-known14 concentration contribution to the
free energy of a homogeneous binary mixture of N total
moles

G�NRunivTm�nH log nH�nL log nL�. �28�

As illustrated in Fig. 2, the length dx of the thermoacoustic
separation duct moves ṄH dt moles of the heavy component
from a location where the concentration is nH to one where
the concentration is nH�(dnH /dx)dx , and similarly moves
ṄL dt moles of the light component from nL to nL

�(dnL /dx)dx . The change in G for this process is

FIG. 1. The maximum ratio of gradient-dependent loss to thermal and vis-
cous losses, for He–Ar mixtures in the boundary-layer limit with
���13.4°.

FIG. 2. Sign conventions used to derive the increase in Gibbs free energy
associated with mixture separation along a duct. For the process considered

here, we have ṄL��ṄH , nL�1�nH , and dnL /dx��dnH /dx .
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dx �
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Combining the logarithms and using the identities given in
the caption of Fig. 2 quickly yields

dĠ

dx
�

RunivTm

nH�1�nH�

dnH

dx
ṄH , �30�

where ṄH is the mole flux of the heavy component. Using
Eqs. �41�, �44�, and �56� from Ref. 4 for the mole flux
through second order, this may be rewritten as

dĠ

dx
�

1

nH�1�nH�

dnH

dx � �


4rh

��1

�
kT�p1�

��U1��F trav cos ��Fstand sin ��

�
�


4rh

pm

	A
Fgrad�U1�2

dnH

dx
�pmAD12

dnH

dx � . �31�

Although Ġ and Ė� are both powers associated with
separating the mixture along a concentration gradient, they
differ dramatically. Whereas Eq. �22� is linear in the concen-
tration gradient, Eq. �31� is quadratic in dnH /dx . The term
linear in dnH /dx is quite similar to dĖ� /dx , but it differs in
its phase dependence and its lack of the combinations of L ,
�, �D
 , and �
D appearing in Eq. �22�. Moreover, while
dĠ/dx→0 as the separation approaches saturation, dĖ� /dx
does not generally vanish, and if one first establishes a con-
centration gradient and then turns off the acoustics,
dĖ� /dx�0 while dĠ/dx gives a nonzero energy loss as the
concentration gradient decays by ordinary diffusion. Hence,
dĖ� /dx must describe not only energy transferred from the
acoustic wave into separation of the gases but also more
subtle features of the dissipation which are lost in the heu-
ristic description of separation given in Ref. 2. For example,

while Eq. �21� describes losses due to diffusion of heat and
of mass at the boundary layer and driven by the oscillating
temperature T1 when dnH /dx�0, this loss must be adjusted
higher or lower by Eq. �22� in the presence of a longitudinal
concentration gradient. This adjustment depends not only on
the gradient but on the phasing of the acoustic fields, because
the enhancement or depletion of one species outside the
boundary layer will lead to either more or less thermal dif-
fusion radially, depending on whether the motion is in phase
or out of phase with respect to the temperature oscillations.

In the denominator of Eq. �27� we could use Eq. �19�.
However, Sec. III above and Sec. V of Ref. 2 show that, to a
high degree of accuracy, we can ignore all the contributions
to acoustic dissipation arising from thermal diffusion and
simply use the ordinary expression for the acoustic dissipa-
tion

dĖ tot

dx
�

	A

4rh

m��u1��2���

	A

4rh

��1


ma2 �p1�2�
 , �32�

yielding some immediate simplification.
For comparison with other separation methods, it is nec-

essary to find the conditions that maximize �. In particular,
one must determine at what concentration gradient the maxi-
mum � occurs. Since neither of the terms in �32� depends on
dnH /dx , the maximum efficiency must occur when dĠ/dx
is itself a maximum. Equation �31� shows that this rate is
quadratic in dnH /dx , and it is straightforward to show that
the only maximum occurs when

dnH

dx
�

1

2 � dnH

dx �
lim

, �33�

where (dnH /dx) lim is the value of dnH /dx for which ṄH

�0, obtained in Eq. �25�. �Because effects which remix the
gases, such as ordinary diffusion, enter the expression for the
mole flux ṄH at first order in dnN /dx for many other ther-
mophysical separation processes as well, the maximum rate
at which useful separative work can be done often occurs
when the concentration gradient is at half of its saturation
value.15� Inserting this gradient into Eq. �31�, and using Eq.
�32�, we obtain the efficiency at the best dnH /dx

��best dnH /dx ��
���1 �2kT

2�z��2�F trav cos ��Fstand sin ��2

4�nH�1�nH�����1 ��z��2������Fgrad�4D12	rh /�
��u1��2�
, �34�

where z���p1� /
ma��u1��. This efficiency is maximized as-
ymptotically as z�→� and as ��u1��→� , where ��u1�� again
must be kept below the onset of turbulence. The only other
adjustable parameter is the wave’s phasing �. To maximize
the efficiency with respect to �, tan ��Fstand /F trav , so that
the limiting efficiency for thermoacoustic separation is
finally

�best�
�

4

F trav
2 �Fstand

2

�Fgrad
. �35�

In the context of Refs. 2–4, �best�0.0023 for a 50–50
He–Ar mixture.

Taking ��1 leads to great simplification in the three
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F’s in Eq. �35�, so that in this limit the best thermoacoustic
efficiency becomes

� ta,best�
�

4

2�1���L �

�L�1��L �2�1���
. �36�

We will compare this expression to the efficiencies of other
mixture-separation methods in the next section.

In practice, it is easy to achieve values of dnH /dx , z�,
��u1��, and � that bring � close to � ta,best . For example,
some of the measurements reported in Ref. 4 had � at its
optimum value, z��4, and ��u1�� large enough to make
4D12	rh /�
��u1��2(�Fgrad)�0.02. At some time during
the approach to the saturation data reported in Ref. 4, Eq.
�33� was satisfied as well. Under these circumstances,
�/� ta,best�0.9.

V. COMPARISON TO TRADITIONAL METHODS

Mixture-separation methods can be broadly divided into
two categories, those that are intrinsically reversible and
those that are intrinsically irreversible. The use of perfect
semipermeable membranes is an example of an intrinsically
reversible separation method; for example, helium and hy-
drogen can be separated from much heavier gases using such
membranes, with a thermodynamic efficiency near unity.
Distillation separation methods16,17 �e.g., air-separation
plants� are also impressively efficient, often exceeding �
�0.5 in industrial practice. Relying as it does on intrinsically
irreversible processes—diffusion of heat, mass, and
momentum—thermoacoustic mixture separation cannot ap-
proach these high efficiencies.

However, many important mixtures, including those of
most isotopes and of most isomers, must be separated by
intrinsically irreversible methods, because the more efficient
methods are inapplicable. The intrinsically irreversible meth-
ods include traditional thermal diffusion, gaseous diffusion,
and mass diffusion.18 To get an initial impression of how the
efficiency of thermoacoustic mixture separation compares
with those of these other methods, we will focus on isotope
separation and on the first two intrinsically irreversible meth-
ods listed above.

The very process of thermal diffusion was only discov-
ered between 1911 and 1917,19 and attempts to separate iso-
topes with it followed quickly, with Clusius and Dickel20

separating neon isotopes in 1938. Their apparatus comprised
two vertical concentric tubes, the inner one heated and the
gas mixture between the two. Thermal diffusion draws the
lighter isotope toward the inner tube, and the heavier toward
the outer tube, so that gravity-driven convection separates
them vertically.

While thermal diffusion was discovered as a conse-
quence of the kinetic theory of gases, the origins of gaseous
diffusion are much older, tracing back to the experiments of
Graham in the mid-19th century on the effusion of gases
through porous materials. Although gaseous diffusion was
used in the discoveries of the noble gases at the end of the
19th century, it was not until 1920 that the process was used
for an isotope separation, in neon.21 In a gaseous-diffusion
system, the gas mixture is supplied at a constant pressure to

one side of a porous barrier which is held at lower pressure
on the other side. If the pore size is small enough, gas moves
through the pores in Knudsen flow, and the components of
the mixture escape to the low-pressure side at rates inversely
proportional to the square root of their molecular masses.

Onsager22 derived fundamental bounds on the efficien-
cies of separations based on thermal diffusion and gaseous
diffusion. Our derivation of Eq. �30� is similar to his, and he
further argued that the exergy spent in thermal-diffusion
separation must be at least as large as the exergy lost in
thermal conduction through the gas, and the exergy spent in
gaseous-diffusion separation must be at least as large as the
exergy dissipated in the free expansion. In our notation, his
results are

� td,best�
�

4

1

L
, �37�

�gd,best�
nH�1�nH�

4 � �D

D � 2

, �38�

where D is the average gas diffusion constant, �D is the
difference between the Ds for the two components of the
gas, and the subscripts td and gd signify thermal diffusion
and gaseous diffusion, respectively. Note the obvious simi-
larity between Eqs. �35� and �37�. For a 50–50 He–Ar mix-
ture, these equations show that �best�0.57� td,best .

To make further progress in approximately comparing
the efficiencies of thermoacoustic, thermal-diffusion, and
gaseous-diffusion separation, we will make some estimates
using the hard-sphere kinetic-theory values16,23 of the various
parameters, assuming that the molar mass difference �m
�mH�mL is much smaller than mavg

�� 5
3 , �� 2

3 , L� 5
4, �39�

kT�nH�1�nH�
105

236

�m

mavg
, �40�

�D

D
�

�m

2mavg
. �41�

With these values, Eqs. �36�, �37�, and �38� become

� ta,best�0.009nH�1�nH���m/mavg�
2, �42�

� td,best�0.016nH�1�nH���m/mavg�
2, �43�

�gd,best�0.063nH�1�nH���m/mavg�
2. �44�

Remarkably, these are all of the same order of magnitude,
and share the same dependence on concentration and mass
difference.

As an example of an economically important, intrinsi-
cally irreversible separation, consider the enrichment of
uranium.24 Most commercial power reactors use uranium
that has been enriched by gaseous diffusion of UF6 to about
3% U235; the natural abundance is 0.7%. Evaluation of Eq.
�44� for this situation yields �gd,best�10�7. The Tricastin
�France� uranium enrichment facility actually operates at an
efficiency of 10�8. This example merely demonstrates that
an extremely inefficient separation process can nevertheless
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be important. In considering possible applications of ther-
moacoustic mixture separation, the intrinsic thermodynamic
efficiency is not prohibitively low, so issues such as cost and
reliability might be decisive.
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